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Following a method first introduced by Prigogine, the H theorem is written as 
the law of increase of entropy for a slightly inhomogeneous gas. It is shown that 
the local rate of entropy production for such a gas is simply a homogeneous 
quadratic form of the generalized forces associated with the various irreversible 
processes with coefficients possessing all the properties of the phenomenological 
coefficients of irreversible thermodynamics. The local rate of entropy production 
is explicitly evaluated for a simple monatomic gas and is compared with the 
corresponding expression of irreversible thermodynamics. 
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1. INTRODUCTION 

The H theorem introduced by Bol tzmann (1) in this famous 1872 memoir  is 
still regarded as one of  the outs tanding achievements of  the human mind in 
perceiving natural  phenomena.  Al though there were objections to the 
general izat ion of  the H theorem to po lya tomic  gases, these object ions have 
been circumvented first quantum mechanical ly  by Stueckelberg (2) and 
W a l d m a n n  (3) util izing the unitar iety of  the scattering matrix,  and recently 
c lass ical ly  by Cercignani  and Lampis  (4) using t ime reversal  invariance of  the 
equations of  motion.  

The H theorem is s imply a s tatement  of  the universal law of  the 
increase of  entropy for a gas in terms of  the b inary  coll isions of  its 
constituents.  Almos t  all of  the natura l  processes observed in our universe are 
known to follow this principle of  increase of  entropy,  and no indicat ion has 
ever been made that  violates this principle. However,  as it occurs most  of  the 
natural  phenomena are often studied macroscop ica l ly  by util izing the 
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phenomenological laws of irreversible thermodynamics. The H theorem is 
usually used not as a beginning principle, but rather as a principle which is 
treated as a constraint in obtaining certain properties pertaining to the 
microscopic world in the study of irreversible processes. ~5'6) 

The first detailed study of the H theorem as a beginning principle for 
the law of increase of entropy was made by Prigogine. ~7) In this treatise 
Prigogine shows in detail a comparison between the Gibbs formula and the 
requirements of the kinetic theory of gases and ends in expressions for the 
entropy production of various irreversible processes using the Chapman- 
Enskog (8'9) approximation for the distribution function. Since then, the 
compatibility between the laws of irreversible thermodynamics and the 
results of the kinetic theory have been further studied in detail (Lifshitz and 
Pitaevskii, ~5) Woods, ~6) Rumer and Ryvkin, (1~ de Groot and Mazur, ~1) 
etc.). More recently van Beijeren and Ernst ~12) have suggested for the 
distribution function a modified Enskog equation, particularly important for 
mixtures of hard spheres, which leads to transport coefficients that are in 
complete agreement with the laws of irreversible thermodynamics. What is 
not discussed in all of these references is how the entropy production through 
the H theorem becomes a quadratic form of the generalized forces where the 
kinetic coefficients that satisfy all the requirements of the phenomenological 
coefficients of irreversible thermodynamics can be readily obtained. 

It is the purpose of this study to show that the H theorem in 
conjunction with the Boltzmann equation can be used more widely as the 
fundamental equation of irreversible thermodynamics for even systems that 
are far from equilibrium and that it is equivalent to the Gibbs equation in 
expressing the local rate of entropy production as the sum of the products of 
generalized forces and conjugate generalized fluxes. Moreover for the weakly 
nonequilibrium state of the gas under consideration, the linear 
phenomenological laws between generalized fluxes and generalized forces of 
irreversible thermodynamics can be readily obtained from the solution of the 
Boltzmann equation in conjunction with the H theorem ensuring all the 
properties of the phenomenological coefficients. 

In this study following Prigogine ~v) the H theorem is written for a 
slightly inhomogeneous gas expressing the local rate of entropy production. 
The Chapman-Enskog ~8'9) or Hilbert (13'14) solution of the Boltzmann 
equation is used to show that the local rate of entropy production is simply a 
homogeneous quadratic form of the generalized forces with coefficients 
satisfying Onsager's principle (15) and all the pertaining properties. Finally 
the local rate of entropy production for a simple monatomic gas is evaluated 
explicitly and is compared with the corresponding expression of irreversible 
thermodynamics. 

Only single-component gases are considered in this paper. 
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2. THE H-THEOREM FOR A SLIGHTLY 
INHOMOGENEOUS GAS 

We consider Bol tzmann's  H theorem in the absence of  any external field 
for the nonequilibrium state of  a single-component gas characterized by the 
distribution function f ( v ,  x, t) at point x and time t: 

d// 
= f lnfJ( f )  d3v <~ 0 (2.1) 

dt 

where J( f )  is the collision integral given by 

J( f )  = f w' ( f '  f[  - f f  l) d3v' a3v~ d3v, (2.2) 

H is the Boltzmann H function defined as 

H -  f f l n f  d3v (2.3) 

v, v~ and v ' ,  v~ denote the atomic (or molecular)  velocities before and after a 
binary collision, respectively, 

f = f ( v ,  x, t) f '  = f ( v ' ,  x, t) 

f l  = f ( v l ,  x, t) f [  = f (v~ ,  x, t) 

and w' = w(v, v~ ~ v ' ,  v'~) is the transition probabil i ty from a state (v, v l )  to 
a state (v ' ,  v[) in a binary collision. The total entropy S of the gas is related 
to the Bol tzmann H function, except for an additive constant,  by the famous 
relation 

S = - k  ( H d3x (2.4) 
J 

where k is Bol tzmann's  constant. 2 Consequently the H theorem given by 
(2.1) together with (2.4) can be conveniently written as 

ds 1 f dt = - 2  w ' f f l ( z l n z - z - 1 ) d 4 F d 3 x > / O  

where 

z =-- f ' f~  and d41 "=- d3v d3Vl d3v ' d3v~ 
ffx 

2 From now on we set k = 1 for convenience until a later discussion. 
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expressing the law of increase of  entropy as worked out in detail in Lifshitz 
and -. .  (s) PitaevsKu. If  we denote the local rate of  entropy production in unit 
volume by a s, we can then state the H theorem as 

! = ~- f w ff~(z in z - z - 1 ) d4r >/0 (2.5) {7 S 

Following the method first introduced by Prigogine, (7) we now consider 
a slightly inhomogeneous gas characterized by the distribution function 

f = f L (  1 + 0) (2.6) 

where 0 = 0( v, x, t) satisfies the condition 10[ ~ 1 and where fL is the local 
Maxwellian corresponding to a state of  local equilibrium given by 

fL = n \ 27cT / exp - - ~ -  (v - u) 2 (2.7) 

In (2.7), n is the number density, u is the gross velocity field, T is the 
temperature field (measured in energy units), and m is the atomic or 
molecular mass. Since ~ is small compared to unity, it follows that z can be 
approximated by 

Z 
1 §  a 

1 + ~ + 0 1  

where we have used the Maxwellian property 

f L f L 1  ~- flLflL1 

Similarly In z can be approximated by 

In z ~ - (O + 01 - O' -- 0i) - 1/2(0 + 01 - O' - 0i) 2 

Substitution from above for z and in z and from (2.6) f o r f i n t o  (2.5) yields 
to a good approximation 

1 --~i' 
OS=TfWtNLJ~ --0~)2 d 4 V >  0 (2.8) 

Equation (2.8) is the statement of Boltzmann's  H theorem written for the 
local rate of entropy production of a slightly inhomogeneous gas and is in 
complete agreement with equation (3.6) of Prigogine ~7~ written for a single 
component  gas. The function qt in (2.8) should be such that the distribution 
function f given by (2.6) satisfies the Boltzmann equation. It can easily be 



The H Theorem and Irreversible Thermodynamics 455 

verified that the equality holds only when O vanishes, and by virtue of (2.6) 
the entropy production vanishes for a state of local equilibrium characterized 
by the distribution function fL given by (2.7). However, it is important to 
note that fL itself does not satisfy the Boltzmann equation unless n, T and u 
are constants (the uniform state of the gas). Consequently entropy 
production vanishes for a gas in the uniform state as deduced by Boltzmann. 

3. THE LINEAR KINETIC LAWS OF TRANSPORT PROCESSES, 
THE KINETIC COEFFICIENTS AND ONSAGER'S PRINCIPLE 

To proceed further with Boltzmann's H theorem stated as the law of 
increase of entropy for a slightly inhomogeneous gas, we acquire information 
about the function 0. As already mentioned in Section 2, the function 0 
should be such that the distribution function f given by (2.6) satisfies the 
Boltzmann equation. If we consider the Chapman-Enskog (8'9) or 
Hilbert ~3'14) expansions to the Boltzmann equation for a slightly 
inhomogeneous gas, we may to a good approximation identify r from the 
second approximation to the distribution function of these expansions. In this 
case 0 satisfies an inhomogeneous linear integral equation the solution of 
which can be written as 

0 = Z /~<~  X<r> + c1 + c �9 (v - u) + C2(v - u)  ~ 
r 

(3.1)  

where C1, C, and C 2 are some functions of x and t (it follows that C1, C, 
and C 2 vanish in the Chapman-Enskog solution and are functions of x only 
in the steady Hilbert solution), fl(~) are functions of n, T, and (v - u ) ,  and 
X tr) are the generalized forces describing the deviation from equilibrium of 
the associated various nonequilibrium processes. It is worthwhile to note that 
/3(r ) and X t~) can be tensors of any order (scalars, vectors, second-order 
tensors, etc.). For instance, for thermal conduction Y}r)= (c~/?xi)(1/T) 
corresponding to the ith component of a vector and for viscous dissipation 
XI~,)= (1/T)(c~ui/c~xk) corresponding to the (ik)th component of a second- 
order tensor. Moreover/~(r) and X (r) must be tensors of the same order since 

is a scalar function. 
Substitution from (3.1) into (2.8) and utilizing the conservation laws of 

a binary collision yield a homogeneous quadratic form of the generalized 
forces for the local rate of entropy production: 

as = ~ YmX~) = ~ Lrs X~r)X~s) >~ 0 3.2) 
r r , s  
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where we have defined y~r) as the generalized fluxes conjugate to the 
generalized forces X ~) and related to them by 

Y<') = ~ L , s X  ts) (3.3) 
s 

and where Lrs are defined by 

'f 
, ~, • ([?~s) +fl(s)l -fl(~) - (~i) d4F (3.4) 

generalized forces X (~) are proportional to the gradients of The 
temperature and velocity (and of any probable deriving quantity of the 
related nonequilibrium process) describing the weakly nonequilibrium state 
of the gas. Thus, the generalized fluxes given by (3.3) are simply linear 
combinations of such gradients. Consequently equation (3.3) describes the 
linear kinetic laws of transport processes for a slightly inhomogeneous gas. It 
follows that both X (r) and y(r) vanish in the uniform state of the gas and by 
virtue of (3.2) the entropy production also vanishes for the uniform 
(equilibrium) state of the gas. 

The coefficients L~s which connect the generalized forces to the 
generalized fluxes and which are given by (3.4) are called the kinetic coef- 
ficients. It follows directly from (3.4) that 

Lrs =Ls ,  (3.5) 

i.e., the kinetic coefficients L,s satisfy Onsager's principle. (15) The reason 
behind (3.5) should be sought in the principle of detailed balancing already 
contained in the H theorem. Moreover if we set r = s in (3.4), we obtain 

l; 
L r r = ~  - WtfLfLl~3(r)-~-fl(r)l--fl~r)--fl[r)l)2 d4r~O (3.6) 

Another relation between the kinetic coefficients can be obtained by simply 
applying the Schwartz inequality for integrals to (3.4), which yields 

Lr,,L~ ~ (L~s) 2 (3.7) 

The kinetic coefficients Lr, defined by (3.4) (with r4:s)  give the 
coupling between the irreversible processes described microscopically by fl(,) 
and B(~). If tier) and tim are such that certain orthogonality relations hold in 
the form 

I w"fLfLll~(r)(fJ(s) + •(s)l --/~(s)t --/~(s) 1 ) l  d 4 F =  0 (3.8) 
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then by definition the corresponding kinetic coefficient L,. s vanishes. 
Equation (3.8) is simply a mathematical statement of the Curie-Prigogine 
principle. (16-1s) This principle is particularly important for an isotropic 
medium. Since no isotropic tensor of odd order can be constructed, it follows 
that (3.8) is automatically satisfied in an isotropic medium when the sum of 
the orders of the tensors tim and fl(~) is an odd integer. This is in fact the 
reason for the decoupling between the irreversible processes of thermal 
conduction and viscous dissipation of a simple monatomic gas discussed in 
detail below. 

4. THE H-THEOREM FOR THE ENTROPY PRODUCTION OF A 
SIMPLE MONATOMIC GAS 

For a simple monatomic gas the transition probability can be described 
by 

w'd3v ' d3v~ = g da 

where 
g = I v - - v l [ = l v  ~ - -v~l  

and do is the differential cross section in a binary collision. Thus, expression 
(2.8) for the local rate of entropy production of a slightly inhomogeneous 
gas becomes 

a s = � 8 8  (4.1) 

for a simple monatomic gas. The function 0 as mentioned in Section 3 can be 
obtained from the Chapman-Enskog (s'9'19) or Hilbert (13'14) solution of the 
Boltzmann equation for a simple monatomic gas: 

1 c~T 1 
- -  n T  2 {i cqxi nT  v i j D i j  + C1 + C �9 (v - u)  + C2(v --  u)  2 (4.2) 

where 

1 (c~u i ~ui \  

and ~, and r u are defined through the linear integral equations 

= [ � 8 9  - -  u )  - u , )  

] T i j  = l n [ ( V  i - -  U i ) ( U  J - -  U j )  - -  ~ ( ~ i j ( V  - -  111)21 

(4.3) 

(4.4) 
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satisfying the orthogonality conditions 

f ~ { i f L  d3v = 0 (4.5) 

f N,,rijfL d3v = 0 (4.6) 

~ being any of the summational invariants 1, ( v -  u) and �89 u) z. The 
linear integral operator I which appears in (4.3) and (4.4) is defined by 

It//= 7 f L l(I//+ t/-/1 -- - t y ~ ) g d a d 3 v ,  (4.7) 

where ~, is any function of the atomic velocity v. 
Substitution from (4.2) for r into (3.1) and utilizing the conservation 

laws of a binary collision together with the Curie-Prigogine principle for a 
simple monatomic gas yield the.following expression for the local rate of 
entropy production: 

as _ 4nZr 4 1  c~xtC~T c~xj c~T |)~fLfLl(~i + ~il -- ~[ -- ~'il) 

X (~j + Cj, -- ~j -- Cj ,)gdad3v d3v, 

1 ffLfL + 4~f-T-fDijDkl l(rij + "Cij 1 -- r b -- Z'~jl) 

• (Vkl + rkl, -- r 'kl- r'ka)g da d3v d31) l (4.8) 

If we now identify the generalized forces for thermal conduction and viscous 
dissipation by 

X ( r ) _  r ( 1 ~  1 ~gT (4.9) 
i cqx i \ T ]  - -  T 2 6~x i 

1 
X(")is = T D~s (4.10) 

we can define the kinetic coefficients for thermal conduction and viscous 
dissipation in the form 

Llf'--- ~ J  f~A,( ;+r -el,) 

X (~j + ~j, -- ~ -- C;1)gda d'v d3Vl (4.1 1) 
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and 

L (') ~ f fLfL i j k l  = I ( T i j  ~- 12ijl - -  Ttij - -  vtijl)'l 

)< ( r k l  q- r k l  1 - -  ~tkl - -  r l k l l ) g  d G  d a y  d3Vl (4.12) 

and the conjugate generalized fluxes as 

y(r) : L (r)X(r) (4.13) i - - - - q  l~j 

and 

y(.) _ - (~ y(u) (4.14) O : L u k t ~ l k  

so that the entropy production a s given by (4.8) becomes the sum of the 
products of generalized forces and conjugate generalized fluxes: 

= y ( T ) . ~ ( T )  V(U)  y ( u )  "~ D 
f fS  - - i  ~ - i  @ a U x~_ji i i .  v (4.15) 

It is readily evident that the kinetic coefficients given for thermal 
conduction by (4.11) and for viscous dissipation by (4.12) satisfy all the 
requirements imposed by irreversible thermodynamics discussed in detail in 
Section 3. Consequently the H theorem incorporated with the solution of the 
Boltzmann equation defines the kinetic coefficients in a rather natural way. 

Further simplifications arise if one considers isotropy. It follows that in 
an isotropic medium one can define two parameters 2 and r/ (to be identified 
later) by the relations 

L ( r )  _ ~.T2~ (4.16) ij  - -  " - -  -- ij  

and 

L i j k l -  tl ( ik jl 4- (~il(~jk - -  "~(~ij(~kl) (4.17) 

Substituting from (4.16) and (4.17)for f ( r )  and "(~) into (4.11) and (4.12) ~ U "L' Ukl 

and utilizing (4.7) together with an integral theorem in kinetic theory, we 
obtain the following expressions for the two parameter ~ and 17: 

2 -  1 3nT2 f fL~iI~i d3v (4.18) 

1 f 
17 -- lOnT J fL riiITiJd3v (4.19) 
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Substitution from (4.16) and (4.17) for the kinetic coefficients and from (4.9) 
and (4.10) for the generalized forces into (4.13) and (4.14) yields the 
conjugate generalized fluxes: 

ST 
YI  r) = - 2  - -  (Fourier's law) (4.20) 

cox i 

and 

y(u) 2r l (Di  J 1 ij = - -  5Dkk(~ij)  (Stokes' law) (4.21) 

where 2 and r/ are given by (4.18) and (4.19). From (4.20) and (4.21), we 
can now identify the parameters 2 and r/as the thermal conductivity and the 
shear viscosity, respectively. Equation (4.18) for the thermal conductivity )~ 
and equation (4.19) for the shear viscosity r/are in complete agreement with 
the corresponding formulas obtained through the direct definition of fluxes in 
the Chapman-Enskog r or Hilbert (14) theories. 

Finally by substituting from (4.9) and (4.10) for the generalized forces 
and from (4.20) and (4.21) for the conjugate generalized fluxes into (4.15), 
we obtain an expression for the local rate of entropy production of a slightly 
inhomogeneous simple monatomic gas: 

2 cOT c3T 2r/ 1 
a s  - T 2 ~ x  t ~Ox t + - - T -  (DikDik -- 3Di iDkk)  • 0 (4.22) 

Moreover it can be shown by utilizing equations (4.11), (4.12), (4.16), and 
(4.17) that 

2 > 0 and r/> 0 (4.23) 

5. ENTROPY PRODUCTION IN IRREVERSIBLE THERMODYNAMICS 

The local rate of entropy production d 3 in irreversible thermodynamics 
is given by the expression 

8~ = F ~Cr~2~r~ /> 0 (5.1) 
r 

where )~(r~ are the generalized forces and I 7(r) are the conjugate generalized 
fluxes. Equation (5.1) is simply a result of the Gibbs equation together with 

3 We have used the notation (^) for the phenomenological quantities of irreversible ther- 
modynamics to merely distinguish them from the corresponding kinetic quantities. 
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the local state assumption (for details one may refer to Prigogine, (17) 
Katchalsky and Curran, ~8) and de Groot(2~ For systems with small 
deviations from equilibrium, the flux-force relations can be taken linear, i.e., 

I?(r) = ~2 Lrs2(S) (5.2) 
$ 

where Lrs are called the phenomenological coefficients. With (5.2), the local 
rate of entropy production becomes a homogeneous quadratic form of the 
generalized forces )((r): 

d s = ~ LrsX(~)2 (') >~ 0 (5.3) 
F~S 

Expression (5.3) has the same form of the kinetic result (3.2) with the 
phenomenological coefficients Lrs possessing the same properties of the 
kinetic coefficients Lrs described in detail in Section3. Thus, the 
phenomenological quantities can differ from the corresponding kinetic quan- 
tities only by a multiplicative constant which can be identified from the 
appropriate choice of units of measurement. 

For the irreversible processes of thermal conduction and viscous 
dissipation, we may phenomenologically identify the generalized forces and 
the corresponding conjugate generalized fluxes as below: 

!r )= c3 ( 1 ] _  1 cgT 
(5.4) 

' ~xi \ 1 ~ /  ~.2 c~x i 

1 ( (5.5) " <  - - + 

= - - K  - -  = K / % 2  (5.6) 
~xi 

I~o,) ( _ @ D u S , k  ) ik = 2/u Dik q- [.llDjjr~ik (5.7) 

where u i is the ith component of the gross velocity field, T is the ther- 
modynamic temperature measured in ~ and K,/x, and fl, denote the thermal 
conductivity, the shear viscosity and the bulk viscosity of the gas, respec- 
tively. In particular for a simple monatomic gas it can be shown that 

~ ,  = 0 (5.8)  

Thus, the local rate of entropy production for a simple monatomic gas in 
irreversible thermodynamics can be evaluated by simply substituting from 
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Eqs. (5.4)-(5.7) for generalized forces and fluxes together with (5.8) into 
(5.1) to give 

( 1 ) 
ds 7"~X c3XiC~7" c3XiC3~" +-~2P DikDik--~-DiiDkk >~0 (5.9) 

Moreover it follows fromthe inequality sign of (5.9) that 

K > 0 and /~ > 0 (5.10) 

6. THE KINETIC AND THERMODYNAMIC TEMPERATURES 

The thermodynamic temperature 7 ~ used in Section 5 was chosen to be 
measured in ~ whereas the kinetic temperature T was chosen to be 
masured in energy units (by setting k =  1). By comparing (5.9) and (4.22) 
for the local rate of entropy production of a slightly inhomogeneous simple 
monatomic gas, we note that a s and d s essentially have the same form and 
differ only by a multiplicative constant. If we choose the kinetic and ther- 
modynamic temperatures to be related by 

T= k7 ~ (6.1) 

where k =  1.3806 • 10 -16 ergs/~ is Boltzmann's constant, we can show 
that the expressions (5.9) and (4.22) become identical when 

d s = kas, K = k2, and /~ = r/ (6.2) 

7. CONCLUDING REMARKS 

The H theorem following a method first introduced by Prigogine (7~ is 
written for the local rate of entropy production of a slightly inhomogeneous 
gas. The simultaneous treatment of the H theorem and of the Boltzmann 
equation for a slightly inhomogeneous gas yields the linear kinetic laws of 
transport processes. In this case the entropy production becomes a 
homogeneous quadratic form of the generalized forces with the kinetic coef- 
ficients possessing all the properties of the phenomenological coefficients of 
irreversible thermodynamics. 

In the present study by identifying the generalized forces responsible for 
the considered irreversible processes, we have defined the conjugate 
generalized fluxes and the kinetic coefficients through the H theorem using a 
solution of the Boltzmann equation. We have further illuminated that the 
definition of the kinetic coefficients by this method seems to be the most 
natural way since (i) Onsager's principle ~ follows by definition, (ii) the 
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condition for the kinetic coefficient Lrr >/0 follows by definition, (iii) the 
inequality between the kinetic coefficients 

follows directly by applying Schwartz inequality for integrals, and (iv) the 
Curie-Prigogine principle ~ can be discussed in a more natural way. 

In addition we have shown that the Hilbert ~ and Chapman- 
Enskog <8'9) solutions of the Boltzmann equation yield the same local rate of 
enropy production for a slightly inhomogeneous gas. Finally by comparing 
the results of the present method with the results of irreversible ther- 
modynamics, we have reached the conclusion that kinetic theory and the 
Gibbs equation essentially yield the same results for small deviations from 
equilibrium, in agreement with Prigogine. ~v) 
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